UNCLASSIFIED

ap 273 759

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with & definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the sald drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

AFCRL —-62—19

S. R. PETRICK

JANUARY 1962

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD MASSACHUSETTS

Requests for additional copies ww«:uz"
nmmmdwue,awMaunu'

m.as.m'rmumwy .
Arlington 13, Virginia

Department of Defense coniractors must be esigh-
lished for AST3A services, or have their 'need-ta-know’
certified by the cogasizant military agency of their
project or contract.

All other persons and organizations should apply to the:

AFCRL -62~19

USE OF A LIST-PROCESSING LANGUAGE
IN PROGRAMMING SIMPLIFICATION PROCEDURES

S. R. PETRICK

PROJECT 464
TASK 464102

JANUARY 1962

COMPUTER AND MATHEMATICAL SCIENCES LABORATORY

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD MASSACHUSETTS

ABSTRACT

A list-processing computer programming language is valuable
for the coding of such logical algorithms as arise in truth function
simplification because of ease of coding, improved use of com-
puter storage, and a reduction of limitations on the number of
variables that can be handled. The effectiveness of an algorithm
implemented by means of a list-processing system is much less
dependent upon the characteristics of the particular computer
used than if basic machine language instructions are employed.
In combination with the ease of coding, this independence per-
mits the evaluation of the relative effectiveness of several
diverse algorithms or heuristic implementations of a single
algorithm., This paper demonstrates the usefulness of the MIT
709 LISP I System in coding several procedures for determina-
tion of the prime implicants and irredundant forms of a truth
function. The capabilities and limitations of these programs
are discussed as is their application to evaluating the algorithms
they represent.

iii

CONTENTS
Introduction
Programming Truth Function Simplification
Description of Simplification Procedures Considered
Description of the LISP I System
Typical Use of LISP I in Simplification
Effectiveness of Program Produced
Conclusions
Appendix

References

o O B N

11
14
16
19

USE OF A LIST-PROCESSING LANGUAGE IN PROGRAMMING
SIMPLIFICATION PROCEDURES

INTRODUCTION

This paper is primarily concerned with an analysis of the ad-
vantages of a list-processing language in programming switching
circuit minimization algorithms. The MIT LISP I System was used
in this study, and it can be considered typical of several contemplated
or existing systems in drawing conclusions about the usefulness of
a list-processing language in the simplification of truth functions.

The minimization problem has received considerable attention
in recent years. Aside from a few isolated results, however,
only the problem of finding the simplest normal equivalent of a
truth function has been completely solved. In this problem, many
writers have shown that only certain conjunctions of literals need
be congidered as possible clauses. Quine1 calls such clauses
'prime implicants.' Simplification can then be considered in two
parts: determination of the prime implicants (or perhaps a
particular subset of them), and selection of various prime im-
plicants whose alternation is a minimal normal form.

With respect to the first problem, a hasty perusal of the
literature discloses a plethora of alternate treatments. Closer
scrutiny, however (if we are patient enough to plow through
the morass of different notations and definitions the authors have
used so effectively to make our comparison more difficult) reveals
that there are merely a large number of variations on a relatively
small number of distinct themes. Whether the notation is that of
the algebraic topologist or that of the logician, the differences

Received for publication December 1961.

2

are inherent in the methods themselves. These fundamentally
different themes include:

1) Quine's1 determination of the set of prime implicants
from the developed normal (canonical or standard sum) form.
Briefly, on an n-dimensional cube model (Quine, of course, used
the notation of the logician) all pairs of (m-1)-dimensional cells
are compared to determine whether or not they constitute an
m-dimensional cell; the process is then repeated on the set of
m-dimensgional cells so produced.

2) Urbano and Mueller’s2 determination of a set of prime
implicants (not necessarily the entire set) also from the developed
normal form. In this approach all basic cells that emanate
from a vertex are found. In Quine's terminology, all prime im-
plicants that are subsumed by a given clause of the developed
normal form are computed directly.

3) Quine'53 determination of the prime implicants from any
normal formula by iterated consensus taking. A discussion of
this approach will be deferred until later,

The second problem, that of selecting prime implicants to
make up minimal forms, is treated in different fashion by a
4 Mott, 5 McCluskey, 6 and
also spends many pages upon this

number of researchers including Gazale,

7,8 Quinel' 3,9

this writer.
problem, but aside from a few results concerning indispensable
and absolutely dispensable prime implicants, he has little to say

about the problem of selection.

PROGRAMMING TRUTH FUNCTION SIMPLIFICATION

The theoretical work on truth function simplification has
been complemented by the coding of various of these methods for
digital computers. Most of these programs are either unpublished
or else merely referred to briefly in a theoretical paper as a
means of effecting the methods of that paper. Pratherm has

3

published an account of a numerical method of effecting Urbano and
Mueller's2 algorithms, and programs to mechanize various of the
methods of the previous section have been coded at MIT, Columbia
University, IBM, Remington Rand Univac, and the General Electric
Company, to name a few, Many of these programs were written as
tools for the actual simplification of truth functions as required

by some application, such as the design of logical components for

a digital computer,

These programs have much in common, Because they are of
a logical rather than a computational nature, they are all written
either in basic machine code or in a language not far removed
from it. They characteristically require large amounts of storage
for many lists of variable and changing lengths and a fair amount
of storage for the instructions. Upwards of 2000 instructions are
the general rule for a complete simplification procedure. These
instructions are usually sufficiently complicated to require a
tangled bird's nest of a flow chart even for those programmers
who do not believe in flow charts,

Another common feature shared by all such programs is their
limitation to some fixed maximum number of literals that can be
handled. This number seldom exceeds ten, and even then one or
another of the temporary storage blocks often turn out to be in-
sufficient. The individual digits or bits of a computer word are
frequently used to denote specific literals, precluding extension
beyond the number of bits or digits in a word unless extensive
coding changes are made. Such an arrangement, however, per-
mits the parallel processing of the literals of a pair of clauses,
usually by clever coding. This is useful in combining clauses,
testing to see if one clause subsumes another, forming the con-
sensus of two clauses, and so on.

It is obvious that the use of a list-processing system such as
the MIT LISP System or IPL of Newell, Shaw, and Simon has

4

many advantages over the type of program just discussed. First,
the coding is more quickly, compactly, and correctly written.
Second, there is no necessity to reserve specific blocks of
temﬁorary storage for diverse purposes, running out of available
storage for different reasons from problem to problem with un-
used storage still available in every case. Third, there is no
limitation on the maximum number of variables a single program
can handle. The only limitations are the upper limit on total
storage available and the time limit that can be tolerated for the
simplification of a truth function. The serial processing of literals
within a clause alone increases the running time considerably, but
for many applications this should prove of secondary importance to
the several advantages of the system.

DESCRIPTION OF SIMPLIFICATION PROCEDURES CONSIDERED

To demonstrate the advantages LISP I offers, a selected set
of the procedures mentioned in the introductory section were
coded. Under the category of prime implicant detérmination,
method (1) of Quine was coded in preference to method (2) of
Urbano. Aside from the fact that the latter method is more dif-
ficult to program (it is more difficult to describe precisely in
English as well), there is still another compelling reason in
support of this choice. Quine's method sequentially scans various
unordered lists, whereas Urbano's requires numerous decisions
as to whether a particular clause is included among those of the
developed normal form. Although this could be accomplished by a
sequential scan, the situation fairly cries out for a table lookup.

Returning to Quine's method, a selected passage from
Caldwen!?

"In this method we start with the function expressed as a
standard sum. The first step is to compare each term in the
function with all other terms and apply the theorem XY + XY' = X

will be quoted to describe the manner in which it is applied:

wherever possible, All terms which have thus combined to form
shorter terms should be checked off, so that in writing the final
transmission function we can be certain that every term in the
standard sum is included.

® The process is repeated, comparing every pair of shorter
terms, until no more combinations can be made. At the con-
clusion of this process there will be a group of terms which have
not been checked off, These are known as the prime implicants
of the function and we seek to write the final transmission function
as a sum of terms taken from the prime implicants, but to reject
those that are redundant.®

The next problem coded in LISP I was method (3}, beginning
from any alternation of clauses and applying the following two rules:

%a) If one of the clauses of alternation subsumes another,
drop the subsuming clause. (A clause A subsumes a clause B if
all the literals of B are included among the literals of A.)

"b) Adjoin, as an additional clause of alternation, the con-
sensus of two clauses. The conjunction AB with any duplicate
literals deleted is called the consensus of xA and x'B, provided
that it contains no letter both affirmed and negated.

"The operation (b) is to be regarded as not applying in case
the consensus subsumes a clause already present. The two
operations are to be performed as long as possible. The method
(a), in particular, is to be performed as much as possible before
and after each performance of (b). When neither is applicable
further, we have the alternation of all and only the prime im-
plicants. "

The final procedure coded was the production of all irredundant
normal forms from the set of prime implicants. A normal form
is irredundant if it has no superfluous clauses and its clauses
have no superfluous literals, or, equivalently, if it is an alter-
nation of prime implicants none of which is superfluous. The
simplest normal form must be included among these irredundant
forms. The first of Quine's methods, having already been coded,
was used to find the required prime implicants, but any other
method could have been used. The previously mentioned method
of the author was used instead of one of the others largely because
of personal bias. Basically, it constructs an auxiliary function

that is a conjunction of alternations. There is one conjunct for

6

each clause of the developed normal form, and each conjunct is an
alternation of literals denoting those prime implicants that are
subsumed by that clause. If this auxiliary function is expanded to
normal form and subsuming clauses are deleted, the literals of the
remaining clauses denote fhose sets of prime implicants that make
up each of the possible irredundant forms. To conserve time and
storage, subsuming terms are deleted from partially expanded
results. The expressions so obtained are then further expanded,
and subsuming clauses are again deleted. This method:is con-
tinued until all conjuncts have been so processed and an alternation
of conjuncts, one denoting each irredundant form, have been pro-
duced. Several alternative sets of heuristics are available and
will be explained.

DESCRIPTION OF THE LISP I SYSTEM

A brief description of the LISP I System is necessary to illustrate
how easily and compactly LISP-coded programs may be written,
All examples of functions coded will be selected from assorted
truth function minimization programs.

In the ensuing paragraphs, much has been taken from the
LISP I Programmerts Manual13 to which the interested reader is
directed. LISP I is a programming system for the IBM 709 (or 704)
for computing with symbolic expressions. It has a central core
based on a class of recursive functions of symbolic expressions,

One of the features of LISP I is the use of conditional expressions,
devices for expressing the dependence of quantities on propositional
quantities. A conditional expression has the form [Py—=€ys.ees
pn-»en] where the p's are propositional expressions and the e's are
expressions of any kind, It can then be read, 'If Py then e other-
wise if Py then €9 eees otherwise if Py, then en.' If all p's and e's
are defined, the value of a conditional expression is the value of e
corresponding to the first (ordered left to right) true proposition p.

For example,
|x| =[x <0 >-x; T->x].

In recursive definition, a function is defined by means of formulas
in which the defined function occurs. Thisis illustrated by the

following example:
n =[(n=0-1;, TonX[n-1]t],

The class of symbolic expressions treated by the LISP System

(S expressions) are formed by using the special characters

)

(
and an infinite set of distinguishable atomic symbols. Atomic sym-
bols are defined to be strings of capital Latin letters and digits.
S expressions include all atomic symbols and expressions of the
form (e1 . ez) where ey and e, are themselves S expressions. A
list (ml, m,, ..., mn) of arbitrary length can be represented in
terms of S expressions as (m1 (m, - (mn- NIL)...))). Here NIL
is an atomic symbol used to terminate lists.

The LISP System also permits a class of functions of S expres-
sions. For example, the predicate eq [x;y], which is defined if and
only if either x or y is an atomic symbol, equals T if x and y are
the same symbol, and otherwise equals F. Other useful functions
include: atom [x] is a predicate that has the value of T or F,
depending on whether x is an atomic symbol or not.

cons [x;y] is defined for any x and y

cons [e; e,] = (e, - e2)

car [x] is defined if and only if x is not an atomic symbol

car [(e ez)] = e,

cdr [x] is also defined if and only if x is not atomic

cdr [(el- ez)] = e,

equal [x;y] is a predicate that has the value T if x and y are the

same S expression, and has the value F otherwise

null [x] = eq [x;NIL]

append [x;y] has as arguments two lists x and y; this function
combines its two arguments into one new list.

In terms of functions already defined,

append [x;y] = [null[x] - y; T - cons [car[x]; append [cdr{x];y]]]

delete [x;n] removes one occurrence of x from the list n.

delete [x;n] = [null[n] - NIL; equal [x; car[n]] - cdr[n];
T - cons| car[n]; delete [x; cdr [n]]]]

subt [m;n] removes from list m one occurrence of each element
of list n.

subt [m;n] =[null [n] - m; T - subt [delete [car [n]; m];
cdr [n]]]]

union [m;n] = append [subt [m;n]; n].

TYPICAL USE OF LISP I IN SIMPLIFICATION

With the useful functions defined in the last section, it will be
possible to detail the LISP coding necessary to obtain all prime im-
plicants of a truth function from the developed normal form by
Quine's method. Most readers will be familiar with this algorithm,
so it should provide an estimate of coding effort necessar y for other
simplification processes.

The function primp [m] produces all prime implicants from
the developed normal form m, a list of lists. It is a list of clauses
of the developed normal form, and each of these lists is itself a
list of literals of the truth function to be simplified. Each list
denoting a clause of the developed normal form must always contain
the literals or their primes in the same order. Any convenient
atomic symbols may denote the literals and their primes (for
example, A,B C,... and AP, BP, CP,..., for their primes) as
long as a unique symbol is used for each. The only prohibited
exceptions are FAIL and DASH.

Abbreviating the S expression (m, - (m, - (m_ - NIL)...))) by the
list notation (ml, my, ..., mn), an example of a correct argument for

9

the function primp (m) is primp [((AP, BP, C), (AP, B,C), (A,BP, C),
(A,B, CP), (A, B, C))]. Information of this kind, punched on cards,
constitutes the input to the program. The output or value of the func-
tion primp (m) is best described by an‘example. For the previous
argument it is ((A, B, DASH), (DASH, DASH, C)), denoting the two
prime implicants AB and C,
One possible coding of the function primp [m] is the following:
primp [m] = primp 1 [m; scanned [m]]
primp 1 [m;n] = primp 2 [m; n; subt [n; m]]
primp 2 [m; n; o] =[null [0] - m; T - append [suht [m; n] ;
primp [0]]]
scanned [m] = [null [m] - NIL; T - union { scan [car [m];
cdr [m]]; scanned [cdr [m]]]]
scan [x;n] =[null [n] - NIL; T - union [comp[x;car[n]];
scan [x; cdr [n]]]]
comp [m;n} = comp 1 [m;n; compare [m;n]]
comp 1 [m;n;o] =[equal [last [o]; FAIL] - NIL; T - cons[m;
cons[n; cons [o; NIL]]1]
last [m] = [null {m] - NIL; null [cdr [m]] - car [m];
T - last [edr [m]]]
compare [m;n] =[null [n] - NTL; eq [car [n]; DASH] -
[eq [car [m]; DASH] - cons [DASH; compare [cdr [m];
cdr [n]]]; T - cons [FAIL; NIL]]; eq [car (m]; DASH] -
cons [FAIL; NIL] ; eq [car [m]; car [n]] - cons [car[m];
compare [cdr [m]; cdr [n]]]; T - cons [DASH;
strike 2 [cdr [m]: cdr [n]]]]
strike 2 [m;n] = [null [n] - NIL; eq [car [n]; DASH] -
[eq[car [m] ; DASH] — cons [DASH; strike 2 [cdr [m];
cdr [n]]]; T - cons [FAIL; NIL]]; eq [car [m];
DASH] - cons [FAIL; NIL); eq [car [m]; car [n]] -
cons [car [m]; strike 2 [edr [m]; cdr [n]]]; T -
cons [FAIL; NIL]].

10

Before these functions are explained in greater detail, a few comments
should be made. Auxiliary functions such as primp 1, primp 2, and
comp 1 could easily be avoided without augmenting the other functions
materially, but binding the arguments in the manner indicated saves
considerable recomputation time which the LISP I System would
otherwise perform. It shbuld also be noted t:hat the functions compare
and strike 2 are easily written and virtually identical even though
they may look complicated at first inspection because they are much
longer than most LISP functions.

If the functions used to define primp [m] are examined more
closely, it can be seen that the argument of scanned [m] has the
same form as that of primp [m]. Itis alist of clauses and sganned
[m] compares every pair of clauses in the manner to be detailed
under comp [m;n] and forms the union of all such comparisons.

Scan [x;n] has as arguments a single clause x and a list of clauses n.
It forms the union of all lists comp [x;y] where y is one of the
clauses oflist n. Comp [m;n] computes compare [m;n]; if its last
element is the atomic symbol FAIL, the value of éqmp [m;n] is NIL.
Otherwise, comp [m;n] = a list consisting of m, n, and comp;.re

[m;n]. Compare [m;n] has two arguments, each designating a
clause. If these two clauses differ only in one literal which occurs
primed in one and unprimed in the other, compare [m;n] is the
same as either m or n with the primed/unprimed literal replaced

by the atomic symbol DASH, If the clauses differ in any other way,

. compare [m;n] is a list with the atomic symbol FAIL as the last
element. Last [m] is the last element of list m.

For a more thorough understanding of the previous functions,
begin with compare [m;n] and work backwards to primp [m].

Even a cursory knowledge of LISP indicates its relative ease in
coding this method of prime implicant determination.

11

EFFECTIVENESS OF PROGRAMS PRODUCED

Two other programs were LISP coded in addition to the one
detailed in the preceding section, Quine's prime implicant determi-
nation by iterated consensus taking, and irredundant form compu-
tation by the method of this author. The coding of these prodedures
is included in the Appendix. Programs for the latter procedure and
the one of the previous section have been debugged and used on
several test cases. Debugging was quite easy, not only because very
few mistakes were made, but also because it was so easy to check
the validity of each function separately. This section treats the
usage of these programs and includes information obtained from
the test cases as to their effectiveness and limitations,

The nature of the input has already been specified for the func-
tion primp [m]. It is exactly the same for irredundant [m] which
computes all irredundant forms from the developed normal form.
During the computation of irredundant [m], primp [m] is evaluated.
The value of irredundant [m] has the form illustrated by

irredundant [(AP, BP, CP), (AP, BP, C), (A, BP, C),

(A, B, CP), (A, B, C))] = (((AP, BP), (A, B), (BP, C)),
((AP, BP), (A, B), (A,C))).
The two irredundant forms represented are A'B! + AB + BC and
A'B'+ AB + AC. Another function, irredundant 1 [m], has the
same argument but strips off and displays the clauses that must
appear in any irredundant form. Its output is illustrated by

irredundant 1 [(AP, BP, CP), (AP, BP, C), (A,BP, C),

(A, B, CP), (A, B, C))] = ((({AP, BP))), ((BP, C))),
((BP, C)), ((A,C)).

The test cases run, using either an IBM 709 or 7090, include the
following:

primp [((AP, BP, C), (AP, B, C), (A, BP, C), (A, B, C),

(A, B, CP))] = (A, B, DASH), (DASH, DASH, C))

12
primp [((PP, QP, RP, SP), (PP, QP, R, SP), (PP, QP, R, S),
(PP, Q,R, SP), (PP, Q, R, S), (P, QP, RP, SP),
(P, QP, RP, S), (P, Q, RP, SP), (P, QP, RP, 8),
(P, Q. R, SP), (P, Q, R, S))] = (PP, QP, DASH, SP),
(DASH, OP, RP, SP), (PP, DASH, R, DASH),
(DASH, Q, R, DASH), (P, DASH, RP, DASH), (P, Q, DASH,
DASH))
For the same argument m as in the previous case,
irredundant [m] = (((P, Q), (P, RP), (PP, R), (PP, QP, SP)),
((P, RP), (Q,R), (PP, R), (PP, QP, SP)), (P, Q),
(P, RP), (PP, R), (QP, RP, SP)), ((P, RP), (Q, R), (PP, R),
(QP, RP, SP)))

irredundant 1 [((AP, BP, CP), (AP, BP, C), (AP, B, CP),

(A, BP, CP))] = ((((AP, BP))), (((AP, CP))), (((BP,CP))))

Two more functions treated by means of irredundant [m] were11

(0, 1, 2, 4, 5, 8, 10, 12, 13, 16, 17, 18, 19, 21, 24, 25,

26, 27, 29)
and

z(2, 5, 12, 22, 24, 25, 27, 28, 29, 30, 31, 32, 35, 37, 39, 45,

47, 49, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 72,

75, 76, 80, 81, 94, 97, 98, 105, 106, 108, 113, 118),
In all cases, prime implicant determination took five minutes or less,
but irredundant form determination ranged from negligible time up
to 23 hours without termination for the last case given. No provi-
sions had been made to use the common simplification procedures
involving indispensable prime implicants, and when these were
added, computation time was reduced to less than two minutes for
this case,

In general, however, irredundant form computation still took
much longer than prime implicant determination. In order to study
this more closely, several examples of the function irred [m] were
run. The forms of its argument and value are illustrated by

13

irred [(((A), (B), (D)), ((A), (C), (D)), ((B), (D), (E)), ((A),
(EM)] = (E, A), (A, B), (E, C, B), (A, D), (E, D))
which is the list notation for
(A + B+ D)(A+C+D) (B+D+E) (A+E) = AB + AD + AE + DE +
BCE.
Two other examples run were
(R1 + R9) (R1 + R2 + R8) (R3 + R6 + R9) (R4 + R5 + RT7)
(R2 + R3 + R8 + R9) R4 + R6 + R8) (R4 + R6 + RT)
(R1 + R5 + R6 + R7) (R3 + R5 + R9) (R2 + R3 + R5)
and
(B + F) (B+G+L+Q+V) (B+H+W+T) (D+J) (D+I+N+S+X)
(D+H+L+P) (C+H+ M+R+W) (C+I+0) (C+G+K) (O+S+W)
(J+N+R+V) (P+V) (F+L+R+X) (K+Q+ V)(F+G+H+1+J)
(X+L+M+N+O) (P+Q+R+S+T) (T+X).
The latter function came from a chess board covering problem,
and its solution was of practical interest. The former problem
taxed and the latter swamped the time limitations of the computer.
Consequently, new heuristics were added. Originally, the last
two factors were expanded and simplified, then the resulting factor
was expanded with the third from the last original factor and
simplified, and so on, The new procedure tried was to expand
the original factors in pairs, simplifying the result of each
such expansion, and to repeat this process on the resulting
factors until the function was completely expanded. This permitted
computation of the first case in less than two minutes, but the
second case was still unfinished in fifteen minutes. It was shown
that the addition of a set of heuristics to divide the problem into a
set of simpler problems by means of the well known method of
branching again permits the solution of this particular problem in
a few minutes. It would not be hard to propose a still more com-
plicated sample which would swamp the capabilities of even this

program, however.

14 ' :

During the course of an ordinary machine run, the LISP Sys-°
tem is duplicated on a scratch tape. It is, therefore, trivial to make
extra tapes containing all of the functions of this réport. Any
group interested in obtaining such a tape for production or further

research may do so simply by supplying a blank tape.

CONCLUSIONS

It is apparent that LISP is a convenient language in which to
program truth function simplification procedures. This would have
been even more striking if many of the auxiliary functions used to
bind variables and prevent wasteful fecomputations had: not been
introduced. It is also significant that LISP imposes no reservations
on the use of tabular temporary storage to be reserved for diverse
purposes nor on the maximum number of variables a single program
can handle. Use of the functions included in this paper should make
it easier to implement other simplification procedures.

A LISP-coded comparison of two dissimilar methods of attaining
the same goal might prove a persuasive argument in support of one of
these methods. If speed performances consistently and strongly
favor one method for a large number of truth functions considered,
it might be concluded not only that this method is preferable for
LISP implementation, but also that it is probably to be preferred
for hand computation. At least, the LISP programs seem to operate
in a manner closer to the way in which a human applies simplifi-
cation rules than do basic language coded programs, which are
more dependent upon the idiosyncracies of particular machines,

Looking more critically, the LISP program can be thought of as
applying a sequence of procedures not unlike those into which a human
has conceptually classified his complex simplification procedure,

To deduce anything about a method's applicability to hand computation
from a corresponding LISP program, the individual time or effort
requirements of the constituent components of each must be known.

15

Then by means of a few inequalities (since the basic operations can-
not be expected to pose the same relative difficulty for both man and
machine) it is possible to hypothesize about the effectiveness of a
set of methods for hand computation on the basis of experimental
machine results. Care must be taken, however, in generalizing
such results to other machines.

It was not possible for the author to make any such comparisons
of several basically dissimilar methods of truth function simplifi-
cation., Several alternative heuristics were tried, however, for
carrying out individual algorithms considered, resulting in a
determination of marked superiority for certain procedures that
did not seem intrinsically better than others. This was particularly
true in irredundant form computation as is treated in the Appendix.
It lends credence to the thesis that empirical results obtained
using the LISP Programming System may be useful for evaluating
the relative effectiveness of diverse simplification procedures.

16
APPENDIX

Analogously to the way the functions defining primp [m] were
themselves defined in terms of more elemer*ary functions, this
Appendix will treat the functions irredundant [m] and primp 3 [m]
which respectively produce irredundant forms and prime implicants
by iterated consensus taking. Explanations of the roles played by
each function and descriptions of the form of their arguments and
values will not be included. These are, however, available on request.

The list structure of both the argument and value of the function
irredundant [m] has previously been discussed. This function can
be defined as follows:

irredundant { m] = irred [table [m; primp [m]]]

table [m;n] = [null [m] - NIL; T - cons [column [car [m];n];

table [cdr[m]; n]]]
column [x;n] = [null [n] - NIL; subsume 1 [x; delete 1
[DASH; car [n]]] - cons [cons [delete 1 [DASH; car[n]];
NIL];column [x; cdr [n]]]; T - column [x; edr [n]]]
delete 1 [x;n] =[null [n] - NIL; equal [x; car [n]] -
delete 1 [x; cdr [n]]; T - cons [car [n]; delete 1 [x;
cdr [n]]]]

irred [m] =[null [m] - NIL; T - mult [car [m]; irred[cdr{m]]]]

mult{m;n] = mult2 [multl [m; n]]

mult 2 [m] = subsume 3 [m; m]

mult 1 [m;n] = [null {n] - m; null [m] - NIL; T - append

[expand [car [m] ; n]; mult 1 [edr [m]; n]]]
subsume 3 [m;n] =[null [n] -+ m; subsume 2 [car [n];
delete [car [n]; m]]; subsume 3 [delete [car [n]; m];
cdr [n]]; T - subsume 3 [m; cdr [n]]]
subsume 1 [x;y] = null [subt [y;x]]
subsume 2 [x;m] =[null [m] - F; subsume 1 [x; car[m]] - T;
T - subsume 2 [x; cdr [m]]]

17

expand [x;n] = [null [n] - NIL; T - cons [union [car [n];
expand [x; cdr [n]]]]
Additional and modified heuristics, most of which were dis-
cussed in the main body of this paper, include:
(A) expand [x; n] = null [n] - NIL; subsume 2 { x;n] - cons [x;NIL];
T - cons [union [car [n]; x]; expand [x;cdr [n]]]]
This substitution combines some simplification into the ex-
pansion process.
(B) irred [m] =(null [cdr [m]] - car [m]; T — irred [irred 1{ m]]]
irred 1 [m] =[null [m] - NIL; null {cdr [m]] - m; T -
cons [mult {car [m]; cadr [m]]; irred 1 [eddr [m]]]]
This change and addition replace sequential, factor-by-factor ex-
pansion and simplification by a pairwise parallel process.
(C) irredundant 1 [m] = strip [irred 3 [table [m; primp [m]]]]
strip [m] = [equal [length [car {m]]; 1.0] - cons [car [m];
strip [cdr [m]]]; T - irred [m]]
length [y] =[null {[y] - 0.0; T - sum [length [cdr [y]]; 1.0]]
irred 3 [m] =irred 2 [m; m]
irred 2 [m;n] = [null [n] - m; equal [length {car [n]]; 1.0] -
cons [car [n]; irred 3 [delete 2[car [n]; m]]]; T -
irred 2 [m; cdr [n)]]
delete 2 [m;n] = [null [n] - NIL; contained [car [m]; car[n]]
delete 2 [m; cdr [n]] ; T - contained [x; cdr [y]]]
These additions strip off all indispensable prime implicants

‘

and delete all factors that contain an indispensable prime implicant
as a term,

Prime implicant computation by iterated consensus taking might
be accomplished by a function primp 3 [m] whose argument is the
same as for primp [m]. The following coding has not been debugged:

primp 3 [m] = primp 4 [subsume 5[m]]

primp 4 [m] = primp 5 [m; generate [m]]

primp 5 [m;n] = [null {[n] - m; T - primp 6 [cons [n;m]]]

18

primp 6 [m] = primp 4 [subsume 6 [m]]

subsume 5 [m] = subsume 8 [m;n]

subsume 8 [m; n] = [null [n] - m; subsume 4 [car [n];
delete[car [n]; m]] — subsume 8 [delete [car [n]; m]
cdr [n]]; T - subsume 8 [m; cdr [n]]]

subsume 6 [m] = subsume 9 [car [m]; cdr [m]]

subsume 9 [x;n] = [null [n] - NIL; subsume 7 [car [n];
x] -+ subsume 9 [x; cdr [n]]; T - cons [car[n];
subsume 9 [x; cdr [n]]]]

generate [m] = gen [m;m)]

gen [m;n] = gen 1 [m;n; trygen [car [m]; cdr [m]; n]]

gen 1 [m;n;o] = [null [m] - NIL; null [0] - gen [cdr [m];

n]; T - o] ‘

trygen [x;m;n] = trygen 1 [x;m;n; consensus 1 [x; car [m]]]

trygen 1 [x;m;n;y] = [null {m] - NIL; eq [1last [y];
FAIL] v subsume 4 [y;n] - trygen [x; cdr [m]; n];
T - cons [y; m]]

subsume 4 [x;m] = [null [m] - F; subsume 7 [x; car [m]] -T;
T - subsume 4 [x; cdr [m]]]

subsume 7 [x;y] = [null [y] - T; eq [car [y]; DASH] v
eq [car[y]; car [x]] - subsume 7 [cdr [x]; cdr [(y]l;
T -+ F]

consensus 1 [m;n] = [null [n] -+ NIL; eq [car [m];
car [n]]v eq [car[m]; DASH] - cons [car [n];
consensus 1 [cdr [m]; cdr [n]]]; eq [car [n]; DASH] -
cons [car [m]; consensus 1 [cdr [m]; cdr [n]]]; T -
cons [DASH; consensus 2 [edr [m]; cdr [n]]]]

consensus 2 [m;n] = [null [n] -+ NIL; eq [car [m]; car [n]lv
eq [car[m]; DASH]-» cons [car [n]; consensus 2[cdr [m];
cdr [n]]]; eq [car [n]; DASH] - cons [car [m];
consensus 2 [cdr [m]; cdr [n]]]; T - cons [FAIL;NIL]]

10.

11,

12,

13.

19
REFERENCES

W.V. QUINE, The Problem of Simplifying Truth Functions,
Amer, Math. Monthly, 22:521-531, 1952,

R.H. URBANO and R.K, MUELLER, A Topological Method for
the Determination of the Minimal Forms of a Boolean Function,
IRE Trans. EC, Ec-5, pp 126-132, 1956,

W.V., QUINE, A Way to Simplify Truth Functions, Amer. Math,
Monthlx, 61:627-631, 1955,

M.J. GAZALE, Irredundant Disjunctive and Conjunctive Forms
of a Boolean Function, IBM Journal of R&D, 55171-176, 1957,

T.H. MOTT, Determination of the Irredundant Normal Forms of
a Truth Function by Iterated Consensus of the Prime Implicants,
Proceedings of the ICIP, Butterworths, London, June 1959,

E.M. McCLUSKEY and I.B. PYNE, An Essay on Prime Im-
plicant Tables, Tech. Rpt No, 1, Dept. of E.E, Dig, Systems
Lab., Princeton University, October 1960.

S.R. PETRICK, On the Minimization of Boolean Functions,
Proceedings of the ICIP, Butterworths, London, June 1959,

S.R. PETRICK, A Direct Determination of the Irredundant Forms
of a Boolean Function From the Set of Prime Implicants,
AFCRC-TR-56-110, Air Force Cambridge Research Center,
April 1956,

W.V. QUINE, On Cores and Prime Implicants of Truth
Functions, Amer, Math. Monthly, 66:755-760, 1959,

R. PRATHER, Computational Aids for Determining the Minimal
Form of a Truth Function, J,Assoc, Comp. Mach., Vol. 7,
No. 4, October 1960,

S.H. CALDWELL, Switching Circuits and Logical Design,
John Wiley & Sons, 1958, pp 146-147.

E.M. McCLUSKEY, Minimization of Boolean Functions, Bell
Sys. Tech. J., §§.:1417-1444, 1956,

LISP I Programmer's Manual, Computation Center and Research
Lab. of Electronics, MIT, March 1960,

QIIAISSV TONA

“H'S YoIned I
S3MOID
BupyolImg — S8} MoIo

OTU0JI}ODTE TeITIIOITH "2
Burwrureafoad
swa}sks Suissao

-0ad vyeq—siondwo)) ‘g

AUIAISSVTONN

ored I
S3Noaro
SuryolImg —s3moaro

OJUOJ}OSTD TEeILIIOBTH g
Burwurexdoad
swaysls Juissad

-oad eyeg—sJajndwo) °y

‘H°S

QAEIAISSVTONN

(1240) sayexysuowop Jaded s1y], “wyiizodre atduls
® Jo suopejuRwaldw} OPSTIMaY J0 sWYLI08Te
8SJDAIP TBJISASS JO SSIUDANO2JJ3 SAjE[eI

a3 Jo uopjenteas ayj sjrwaad aduapuadapur syy3
‘8urpood j0 ases ay} YIIM UOReUqUIOD Ul ‘pafordwd
oJe suononaisuj afendue] suyoew dOfseq JI UBY}
posn Joindurod xemoriaed ay} jo SOPSTIS}ORIBYD
ay3 uodn juspuadep sse] yonw s} waysks Supssaosoad
-3ST] - JO sueowi Aq pajuswaldwry wyjjIoSTe ue

JO sSaULATIOR)Je 9y, "PIaIpURY 3 UED jey} Sa[qelIeA
JO Joqunu 9y} UO SUCTJE}RW] JO UOTONPAJ ® pue
‘a8eao3s xandwoq Jo asn pasoaduy ‘Buppoo jo ases
Jo asnedaq uopedyridwils UOTIOUNY YN} Uf ISJIE SE
supjao8Te Teordo] yons jo Surpoo ayj J0j a[qenyea sy
oden8uey Sutwuwrexioad Joyndwoos Bugssasoad-3siy v

jxodax payssepour) 61-29~THDIV
*dd g1 "g9eT Lrenuep “yOIRd ‘H'S £q
‘SHYNAAD0Yd NOLLVOIAITAINTS ONININ VHOOHd
NI IDVADONV'T DNISSADI0UL-LSI'T V 4O dASN
938J0103JI(J YOJIBISIY SOTUOIIIIHA “SSEI
‘pIOJpog ‘solI0}eIOqe] YoIeasey afpjuquie) gy

(x240) sojeaisuowiap daded styy, ‘wyjrroSTe a18uls
® JO suonjejuswajdwi] JSTINSY IO SWYILIO3Te
9SJSAIP TBIVADS JO SSIUIA[IORIID DA[JeIOJ

aYy3 yo uorjenyeas ay} sjrwxad aousapuadapuy sTy3
‘Buppoo jo ases oy} YIIM uUoeUIqUIOD u] ‘pakordwa
aJe suopronaysuj afenduel sujyoew Oyseq I} Uy}
pasn Jamduwiod aemopaed ay) Jo sORSIISORIBRYD
a8y} uodn juapuadap ssay yonw st waysks Surssasoad
-1S1 ® j0 sueaw Aq pajuswardw} wyijaodTe ue

JO SSIUQAIO9D AYL, 'PI[PUeRY 9¢ UEBD }BY} SOTqRLIBRA
JO J3quInU 2Y3 UO SUOJRIFUII] JO UOTIONPII © puE
‘ageI01s Jandwod jo asn psacadwyi ‘Sujpoo Jo ases
JO asnedaq uopedr[dwls UOTIOUNy YINI} Uf ISTIR SE

jswyyI08Te Te01d0T yons jo Suipoo 3y} JOf STqenyes s

adenduey Suriwreadoad gandwod Burssasoad-31s§ v

ja0daa paylsseouq 61-29-THDAV

‘dd g1 ‘g9eT Ldenuer °“yoLmAd ¥ 'S 4q

‘SHINAAD0Yd NOLLVOIIITINIS DNININVIDOHd

NI IDVADNV'T DNISSHOO0Yd -LSI'T V 40 dSN
9}eJ0}01JIKJ YOJIedSdY SOJUOI}OSTH °*SSei
‘pIOIpAd ‘selIojeIOqe’] YoJessasy Idplaiquied IV

QIIJISSVTONN

‘d°S “Pmned (1
SIMDIFO
BupyoIMG =8} NOIFO
OTUOJ}OI[S TedTII0TH 2
Surwrureadoad
swoajsis Burssad
-oad eyeg—sIamdwo) °1

JUIAISSVTONN

‘S Momned ‘1
S}NOJI 10
BupyoIIMg —SIMOIFO
OTUOJ}OIT TEOJIIOSTH 2
Surwrureadoad
swasks Jussad
~oad eyeg~—saayndwo) ‘g

JIILISSVIONN

(1940) sajexjsuowap daded syl “wyijzodtre agBuls
® JO suopBjuawWadwW} OPSIINAY JO SWYILIoSTe
9BJOAIP TBJISAIS JO SSIUIARIIJI3 SARERI

a3 Jo uopentead ay} sytwgad acuapuadapur sTYy
‘8uppod Jo asea 3y} YIIM uopIeUjquod ul - pakopdura
aJae suoponaisuj afenduey aujyoew djseq J| weyy
pasn Jondwod Jemorixed ay; Jo sORSTIIORIRYD

ay3 uodn jusapuadep ssay yonw s7 waysls Sussassoxd
-}811 ® JO susow £q pajuswadu] wyplIo8e ue

JO SSOUDAJIO9JJ9 3y, ‘pPAIPURY aq Ued }ey} SI[qelres
JO Jaquunu ayj} U0 SUOTIBIFW] JO UOFIONPII € pue
‘a8eao}s Jo3ndwoo Jo asn pasoadwy ‘Buipod Jo Ised
Jo asnedaq uopeoy[dw}s UORDOUN] YINJ} Ul ISIIE Se
Euyyz03Te redrdor yous yo Sujpoo ay} J0F I[qentea S|
a8endue] Surwwexdoad adaynduwioo Buyssado0ad-31sII vV

j10dag payyrsseroun 61-29-THOAV
*dd 61 ‘z961 Lxenuer °“yopned ‘M °S Lq
‘SHHNAADOYUd NOLLVILIITAWIS ONINN VEDOHd
NI ADVAONVT ONISSTOOUd~LSI'T V JO dSN
93BJIOIDIINT YOJIeISIY SOTUOIIOBTH “SSEeW
‘pIojpad ‘salaojeJoqer] yoJeasay Idpjaqued Jv

(1940) sajeajSUOWAD .uwawm STUL Eﬁmhouna apduys
® Jo suopejudwadty SPSIINAY JO sunprIoste
ASIIATP TeJIIA8 JO SSIUIAROSJJ IARE[dX

2y} JO uopenTead ay} sypwgad asuapuadapuy STy}
‘Burpoo Jo 3se3 3y} YIJM UOTIRUJqWIOD ul “pakordwa
aae suoponaisuj adenduey aujyoew d1seq J§ Uy}
pasn Joindwos Jemoriaed ayy Jo sofsTIIORIRYD
oy} uodn juapuadap ssay yonw s} waysfs Juissasoad
-31SJ1 ® jo suedw £q pajuswadw} wRIo3e ue

Fmo SSIUIAJIOSII3 Y, 'PI[PURY 24 Ued jey) SI[qelIrA

JO J3qWINU 3y} UC SUOJIEIJUI] JO UOTIONPII € pue
‘9det03s Jondwiod jo asn pasoadwy ‘Bujpod jJo a8V
JOo asnedaq uopeoRI[dWs UOROUN] YNNI} U] IS|Te Se
puiy3rao8re Teoldo1 yons jo Suppoo ayy J0) 9lqenyes s
a3enduey Sujwureaford aandwoos Suyssasoxd-1sIy v

jrodaa payssePun 61-29- THDAV
‘dd g1 ‘2961 Laenuep “yopned “H°S 4q
‘STYNATI0UA NOLLVOMITINIS HDNINN VHDOUd
NI IOVAONVT DNISSHOOHd-IiSIT V 0 ISN
9IBJI0IOIIY] YOJIBISIY SOTUOXIOATH “SSEW
‘pI0ypad ‘SI1I0YRIOQGET] YOIeISIY o8praque)d IV

AUIAISSVTONN

JHIAISS VIONN

QAIAISS VIONN

QHIAISSVIDNN

ruasaxdax Lay} swyitiosTe ay} Sujpenress

03 uopyeorrdde 1oy} ST S PassnOsIp aJe swexdoad
989y} JO SuoljellwI] pue sapIfqeded sy ‘uopouny
Uja} B JO SULIOJ juepunpaday pue sjuedjduy surtad
U} JO UOTJRUTWIID}OP JOF saanpadsoad rexasss Sujpod
uyp walsLg I 4SITT 604 LIN 2y} JO SSdUMIasn ayj

‘juasaadoa Loy} swiyjraoSre sy} Suryenyess

03 uopyesridde J19Yy} ST se passnosIp aJde swerioad -
959y} JO SUOTIBITWI] pue SopITIqeded ayl, ‘uofouny -
Yjna} € Jo swIoy juepunpagdl pue sjuedjiduy sawtad !
9y} JO UOTIRUTUIIS}dP JOJ saanpadoad Texaaas Surpoo |

up waysAg I 4SI'T 604 LIN dU} JO SSaUyasn ayy ;

AAEIAISSVTIONN

qHAIAISSVTONA

AIIIISSVTONN

QHIAISSVTONI

-yuasaadaa Aayy swyitrodre a3 Sunenreas

03 uopeorrdde aray} sy se pIassnosip axe surexdoad
2s3Y} JO SuolyelwI[pue sanIrFqeded ayl ‘uopouny
Yjnd} € JO SULJIOJ juepunpaxJay pue sjueoypdwuay awtad
39U} JO UOJIRUTWLIAIAP J0F Saanpadoad retaaas Jujpod
ut waisAg I ISI'T 60L LION @Yt Jo ssaunyasn ay}

-juasaadaax Layy swyirIose auy Suryentes

03 uopyeorrdde IIoy} ST S® Passnosip aae stuexdoad
2say} JO suoliE}TWI[pue sajyifiqedes ayJ, “uopouny
YjnJa} B Jo swdoj juepunpaIJy pue suedTdur surfxd
2y} JO UOTIBUTWI ISP JOF saampadoxd TeJaaas uppood
uy wa1sds I ISI'T 60L LIA U3 Jo ssaumyasn ay}

